14.02.2024

В МГУ изучили механизм уменьшения емкости Na-ионных аккумуляторов

Учёный совершает сборку спектрометра 

Коллектив сотрудников кафедр радиохимии и электрохимии химического факультета МГУ совместно с учеными из Сколковского института науки и технологий подробно исследовал новое соединение для катода в натрий-ионных аккумуляторах.​ Полученные данные позволяют описать механизм работы катода и создать материалы для нового типа более дешевых и доступных батарей. Работа выполнена в рамках национального проекта «Наука и университеты», который призван поддерживать и развивать научную деятельность и образование в России. Исследование поддержано грантом Минобрнауки № 075-15-2022-1107, результаты опубликованы в журнале Chemistry of Materials.

Сегодня мы не можем представить свою жизнь без портативных электронных устройств. В каждом из них есть аккумулятор, который необходимо многократно и быстро заряжать, чтобы сохранять их мобильность. Самый популярный тип батарей – литий-ионные. Высокая плотность заряда и безопасность для окружающей среды – безусловные преимущества этих аккумуляторов. Однако количество лития для производства ограничено запасами месторождений, а его цена на рынке металлов нестабильна. Поэтому задача ученых и технологов – найти новые экономически доступные материалы. Одно из решений – замена лития на более дешевый натрий в материале катода и создание натрий-ионных аккумуляторов. Принцип работы батареи при этом не меняется: ионы щелочного металла изначально находятся между плоскостями соединения со слоистым строением, а в процессе заряда батареи покидают структуру и движутся к аноду; при разрядке батареи ионы возвращаются к катоду и встраиваются обратно в межслоевое пространство. Материал для натриевого электрода схож по составу с литиевым. Как правило, для изготовления катодов используют смешанные соли или оксиды металлов (например, LiFePO4 или NaFeO2), однако наиболее перспективными считаются структуры с несколькими различными металлами. Одно из таких соединений, обладающее составом NaNi1/3Fe1/3Mn1/3O2, изучила исследовательская группа МГУ и Сколтеха

Спектрометра в собранном виде 

Чтобы заглянуть внутрь катода, химики использовали несколько различных методов. Среди преимуществ всех приборов особенно важна их селективность, возможность выбрать конкретный элемент (например, атомы никеля) и наблюдать только за его изменениями степени окисления или химического окружения. Один из методов – абсорбционная спектроскопия рентгеновского поглощения (XAS). Обычно XAS реализуется на крупных установках мегасайенс – синхротронах. Однако на кафедре радиохимии химического факультета МГУ смогли создать лабораторный спектрометр, который не уступает им по техническим характеристикам. "Очень часто попасть на синхротрон невозможно из-за большого количества желающих, – поясняет автор работы, младший научный сотрудник кафедры радиохимии Даниил Новичков. – Кроме того, время анализа на таких установках ограничено, поэтому круг исследований сужается. В этой работе благодаря постоянному доступу к прибору нам удалось изучить цикл заряда-разряда катода в режиме operando. Мы не отключали ячейку от источника тока во время измерений. Образец находился под рентгеновским пучком около 30 часов, и это уникальный эксперимент – нигде больше в России или Европе вы не сможете провести такой длительный анализ методом XAS"

Младший научный сотрудник кафедры радиотехники - Даниил Новичков

Фото: Младший научный сотрудник кафедры радиотехники - Даниил Новичков

Результаты исследования NaNi1/3Fe1/3Mn1/3O2​ с помощью этого прибора в сочетании с другими аналитическими методами помогли ученым понять, какие изменения происходят в структуре соединения в процессе работы катода. «Мы выяснили, что первым на выход натрия из структуры “реагирует” никель, его можно назвать самым активным металлом в этом соединении. Кроме того, нам удалось узнать, почему уменьшается емкость аккумулятора с позиции структурных изменений. Поэтому одна из наших задач в будущем – найти способы предотвратить деградацию катода», – рассказывает Игорь Пресняков.

Сотрудник Игорь Пресняков 

Фото: Игорь Пресняков

Авторы работы планируют продолжать исследования в области материалов для аккумуляторов новых типов. Кроме того, уже сейчас они применяют XAS для изучения самых разных объектов: от радиоактивных изотопов до органических комплексных соединений. По мнению ученых, этот метод позволит им и коллегам из разных областей химии выйти на новый уровень исследований.

Источник: Пресс - служба МГУ

Информация о последних событиях и достижениях в области науки, техники и технологий. При использовании материала необходима гиперссылка на ресурс

. Все авторские права на изображения и тексты принадлежат их создателям. Если вы являетесь правообладателем и не согласны с размещением вашего материала на нашем сайте, пожалуйста, свяжитесь с нами по адресу
izd-naukatehnika@yandex.ru
.

© 2023 Наука и техника