18.01.2024

Ученые МГУ расширили возможности линейно-оптической генерации перепутанных состояний фотонов

Ученые Центра квантовых технологий МГУ нашли более эффективные способы генерации произвольных двухкубитных перепутанных состояний. Такие состояния являются основой для построения квантовых оптических сетей и создания оптических квантовых компьютеров. Ученые обнаружили, что ранее известные методы генерации таких состояний были далеки от возможного предела эффективности и в результате исследования были предложены новые методы получения таких состояний. Они необходимы для создания оптических квантовых компьютеров и для построения квантовых оптических сетей. Результаты работы опубликованы в журнале Physical Review Applied

Журнал «Наука и техника» - Новости рубрики «Наука»

Исследования выполнены в рамках Дорожной карты РФ по квантовым вычислениям, Междисциплинарной научно-образовательной школы МГУ «Фотонные и квантовые технологии. Цифровая медицина» и поддержаны фондом «БАЗИС».

Интерес к разработке эффективных источников перепутанных состояний фотонов возник давно – сначала в рамках фундаментальных исследований квантовой оптики, а потом в связи с появлением прикладных областей квантовых коммуникаций и квантовых вычислений. Очень часто возможность практической реализации квантовых алгоритмов приводит к необходимости генерировать специальные перепутанные состояния и, как следствие, сама возможность построить квантовую сеть или оптический квантовый вычислитель во многом зависит от того, насколько эффективно можно генерировать такие состояния.

Журнал «Наука и техника» - Новости рубрики «Наука»

«До недавнего времени исследователи интересовались только максимально перепутанными состояниями, т.к. известны рецепты построения квантовых компьютеров на их основе. В нашей работе мы рассмотрели генерацию всех возможных двухкубитных состояний и исследовали возможность создания простых оптических схем, которые бы генерировали любое состояние из этого класса. В частности, мы интересовались пределами эффективностей, с которыми можно генерировать двухкубитные состояния с помощью интерференции фотонов в интерферометрах и их измерений – это так называемая линейно-оптическая генерация оптических состояний», – рассказал младший научный сотрудник физического факультета МГУ и Российского квантового центра Сурен Флджян.

Работа является частью большого исследования по созданию квантовых вычислителей с использованием фотонов и интерферометров, которые ведутся в Центре квантовых технологий МГУ имени М.В. Ломоносова совместно с Российским квантовым центром в рамках Дорожной карты по квантовым вычислениям. Интерес к генерации некоторых малокубитных перепутанных состояний, например, двух- и трехкубитных, обусловлен использованием этих состояний в наиболее совершенной на текущий момент архитектуре оптических квантовых вычислений. В этой архитектуре большое количество таких малокубитных перепутанных состояний используется в качестве ресурса. Как следствие, возможность создания оптического компьютера и объемы физических ресурсов, необходимых для этого, зависят от эффективности, с которой можно получать малокубитные перепутанные состояния.

Линейно-оптические квантовые вычисления используют уникальные свойства интерференции одиночных фотонов в многоканальных интерферометрах и измерений их состояний, получаемых на выходе. До данной работы была хорошо изучена линейно-оптическая генерация только одного типа состояний – тех, которые обладают максимальной перепутанностью. В то же время, было понятно, что менее перепутанные состояния можно генерировать эффективнее, чем более перепутанные, т.е. вероятность получения нужного состояния в линейно-оптической схеме может быть тем выше, чем ниже степень перепутанности этого состояния. Но соответствующего исследования с целью поиска пределов возможностей линейно-оптических методов и соответствующих оптических схем для более широкого класса состояний не проводилось. Представленные результаты решают эту задачу.

Журнал «Наука и техника» - Новости рубрики «Наука»

Поиск линейно-оптических схем с наибольшими эффективностями генерации перепутанных состояний сводится к нахождению конкретных параметров многоканальных интерферометров, где реализуется требуемая интерференция фотонов, поступающих на их вход. Однако такое исследование неподъемно аналитически и поэтому применялись методы компьютерной оптимизации.

В результате были найдены пределы максимальной вероятности, с которой могут генерироваться двухкубитные состояния при интерференции одиночных фотонов в многоканальных интерферометрах. Оказалось, что вероятности успешной генерации гораздо выше, чем у известных до этого линейно-оптических схем. Для практического применения были найдены соответствующие компактные оптические схемы, эффективности которых в некоторых случаях достигают найденных пределов линейно-оптической генерации. Это означает, что для построения квантового компьютера может понадобиться меньше физических ресурсов – источников фотонов, интерферометров и детекторов, что приближает создание полноценного практически значимого квантового компьютера.

 «Результаты нашей работы могут найти применения в более совершенных архитектурах оптических квантовых компьютеров и в квантовых сетях. Сейчас вы ведём исследовательскую работу по применению частично перепутанных состояний в квантовых вычислениях. Также мы работаем с экспериментаторами из нашей лаборатории на физическом факультете МГУ для реализации предложенных схем в интегрально-оптическом исполнении с использованием технологии фемтосекундной лазерной печати, которую наша лаборатория развивает на протяжении нескольких лет, и с использованием источников одиночных фотонов, создаваемых нашими коллегами в Физико-техническом институте имени А.Ф. Иоффе. В скором времени планируем сделать эксперимент по генерации перепутанных состояний. В целом, мы надеемся, что результаты нашей работы будут применяться в реальных оптических квантовых вычислителях, способных решать практически значимые задачи», – отметил соавтор работы, старший научный сотрудник Центра квантовых технологий МГУ и Южно-Уральского государственного университета Михаил Сайгин.

Источник: Пресс-служба МГУ

Информация о последних событиях и достижениях в области науки, техники и технологий. При использовании материала необходима гиперссылка на ресурс

. Все авторские права на изображения и тексты принадлежат их создателям. Если вы являетесь правообладателем и не согласны с размещением вашего материала на нашем сайте, пожалуйста, свяжитесь с нами по адресу
izd-naukatehnika@yandex.ru
.

© 2023 Наука и техника